Global Min-cuts

Sunday, 27 October 2024 11:05 PM

Defn: For an indirected graph G = (U,E), for ent (S, US),
let
$$\delta(S) = \{e = (v, w) : | e \cap S | = 1\}$$

(# edges across wt).
froblen: Given a undirected graph G = (U,E),
find ent (S, VS) of minimum containing for $|\delta(S)|$.
(earlier : S-t minum . given directed graph G = (V,E),
capacitie ce t Zt, spl. vertices s,t, find
S-t min - ent of minimum capacity)
We can find dobal min- ent wire (n-1) way - flow

i.e.,
$$G|e = (V', E')$$
 where:
 $V' = (V \setminus \{v_1, w\}) \cup \{z\}$
 $- E'$ consists of all edges in E not invided on $\{V, w\}$.
Further, for all $x \neq v_1 w_1$,
replace all (x_1, v) edges by (x_2) edges
(could be more the one [)
replace all (x_1, w) edges by (x_2) edges
 $(could be more the one [)$
replace all (x_1, w) edges by (x_2) edges
 $Example$:
 $G:$
 $a \circ o \circ o \circ o \circ d$
 $b \circ o \circ o \circ o \circ d$
 $G \setminus \{b, c\}, (e, d)$
 ged
 $G \in (b, c), (e, d)$

$$G_{k}(b,b), (e,d) = a$$

$$G_{k}(b,b), (e,d) = b_{k}$$

$$G_{k}(e,d) = b_{k}$$

- a cut in G is also a cut in
$$G \mid e$$
, unless the cut separater (v, w) .

Fix a min - out (S, V(S). Let k= 18(S))
demma: After n-2 edge contraction, with each successive
edge chosen u.a.r. from the remaining edges, the probability
that (S, V(S)) are the two remaining edges is at least

$$Y(\frac{2}{2})$$
.
Proof: Let e_1, e_2, \dots, e_{n-2} be the edges chosen.
 $|S(S)| = k$. Hence $P_r(e_1 \in S(S)) \leq k = \frac{2}{n}$
from first cloim.
Pr $(e_2 \in S(S) \mid e_1 \notin S(S)) \leq \frac{k}{n-1} = \frac{2}{n}$
in general,
 $P_r(e_i \in S(S) \mid e_1, \dots, e_{i-1} \notin S(S)) \leq \frac{k}{k} = \frac{2}{n-i+1}$

Hence:
$$\Pr\left(e, \notin S(S) \land e_{2} \notin S(S) \land \dots \land e_{n-2} \notin S(S)\right)$$

$$= \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{2}\right)$$
N. small $\neg 1$ $(1 - \frac{2}{n-1}) \cdots \left(1 - \frac{2}{2}\right)$
 $\neg \dots e_{n-2}$ $\neg \dots e_{n-1} = \left(\frac{n-2}{n-2}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$
 $= \frac{2}{n(n-1)} = \frac{1}{\binom{n}{2}}$

ok, so now if we repeat this
$$2n^{2} \log n$$
 times,
 $\Pr(\text{failure}) \leq \left(1 - \frac{1}{\binom{n}{2}}\right)^{2n^{2} \log n} \leq e^{-2n^{2} \log n/n^{2}}$
 $\leq \left(1 - \frac{1}{n^{2}}\right)^{2n^{2} \log n} \leq e^{-2n^{2} \log n/n^{2}}$
 $= \frac{1}{n^{2}}$

so the algorithm obtains a min-at w.h.p.

$$\begin{array}{l} & \mathcal{L}_{avgw} = \mathcal{L}_{avgw} \left(\mathcal{L}_{avgw} \left(\mathcal{L}_{avgw} \left(\mathcal{L}_{avgw} \right) \right) \right) \\ & \mathcal{L}_{avgw} = \mathcal{L}_{avgw} \left(\mathcal{L}_{avgw} \right) \\ & \mathcal$$

In karge's algo, the probability of getty a mineut is
low because in later stager, the prob. of picking a edge
from a min - we is high:

$$Pr(t; \in S(S) | e_1, e_2 \dots e_{in} \notin S(S)) \leq \frac{2}{n-i+1}$$

 $\Rightarrow Pr(e_1, \dots, e_i \notin S(S)) \geqslant {\binom{n-i}{2}} \geqslant 1 \Rightarrow 2(n-i)^2 \geqslant n^2$
 $\binom{n}{2} \qquad (n-i \geqslant n/s_2)$
Instead of runny the entire algo n^2 time. Suppose we
just run the bate stages multiple times?
 $2 \text{ runs} \qquad 0 \qquad n \qquad \text{therefore algo n/2 times}$

Let P(n) be the probability of success with a modes,
i.e., Prob that KSGMC returns a min-cut in a griph
w/ n nodes.
Probability that a single run (i.e., for i=1
in algo) succeeds is
$$\frac{1}{2} \times P(\frac{n}{2}) = vccursive step$$

prob that $(*)$ does not destroy min-cut
Probability flot at least one of the two runs succeds
is $1 - (1 - \frac{1}{2}P(\frac{n}{2}))^2$

Thus karge Stein GMC enceeds w.p.
$$\geqslant 1/\log_{1}n$$

So if we run it $2\log^{2}n$ time, probability of enceeds is
 $\geqslant_{1-(1-\frac{1}{\log n})^{2\log^{2}n}} = 1-\frac{1}{n^{2}}$

Time taken is
$$2\log^2 n$$
 $T(n)$, where
 $T(n) = O(n^2) + 2T(n/n_2)$
 $= O(n^2 \log n)$
here total run time is $O(n^2 \log^3 n)$.